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SUMMARY

Early investigators attributed many of the observed large scale

irregularities in upper atmospheric winds to turbulence. Later_ gravity

wave theory was successful in explaining many of the properties of these

large scale irregularities. This led some researchers to question

whether turbulence existed at all as an ambient phenomenon of the upper

atmosphere. One explanation of the observed small scale structure on

chemical release clouds and meteor trails was that turbulence is produced

by the rocket_ release mechanism or meteor during its passage through

the atmosphere. Comparison of the characteristics of turbulence observed

from both meteor trails and chemical releases indicates that the turbu-

lence must be a naturally occurring ambient phenomenon. This conclusion

is also supported by the discrepancies between observed and predicted

jet and wake turbulent velocities.

On chemical release clouds_ many spherical protuberances or

globules usually appear below a certain altitude. It is shown that the

ambient turbulence provides an unstable medium in which small fluctua-

tions in the release of chemical or meteoric material lead to the forma-

•",,\

tion of these globules. \ The upper atmospheric turbulence has a rather

sharp cutoff point_ the turbopause_ near 106 km, as determined by exami-

nation of the maximum altitude of globulc forration on r_ny chemical

releases. Immediately below the turbopause the globules appear to be

almost spherical_ but they grow more fuzzy and ill-defined in appearance

as the altitude decreases. This behavior is explained by the existence
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and properties of a subrange of motion affected by buoyancy forces and

acting only at small scales.

Turbulent winds determined by chemical release tracking are use-

ful in obtaining estimates of the turbulent energy source parameter s

and the buoyancy and viscous dissipation terms ¢ and c. In a stablyg

stratified portion of the atmosphere_ such as above the mesopauseat about

85 km, all contribution to the energy source term _ must arise from wind
s

shears. The buoyancy dissipation parameter c is important only in suchg
a stably stratified region. Turbulent diffusion of globules at times

~ d2 t 3after release t > 200 sec follows a ~ _ law. The height variation

of ¢ as determined from diffusive growth is in reasonable agreement with

the turbulent wind determinations of _. Both 6 and 6 are found to be
s g

slowly varying with altitude, having values of about 0.4 and 0.35 watts/kg

respectively_ in the height region from 90 km to the turbopause. However_

increases rapidly with altitude. This observed rapid increase and the

energy balance requirement c < _ indicate that turbulence cannot exists

above 106 km_ in agreementwith observation. The observed height vari-

ation of c is compatible with estimates of ¢ obtained at lower altitudes

by other investigators.

During the time after release period t %150 sec, the globules

d2 t5show a ~ ¢ diffusion, indicating the presence of a buoyancy sub-g

range affecting only the smaller scales. During the time after release

interval 150 < t < 200 sec3 the ........~ ~ u_ujan_y subrange no longer affects glob-

ule growthz and molecular diffusion, d2 ~ t; alone accounts for the glob-

ule expansion during this period. The 150 second interval of buoyancy

subrange diffusion is an appreciable fraction of the period 2w/w for
g
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harmonic oscillation of a fluid element displaced from its equilibrium

altitude in a stably stratified atmosphere. The 50 second period of mo-

lecular diffusion corresponds closely to the theoretically predicted time

scale _/w of the largest buoyancysubrange eddies. The maximumbuoy-
g

ancy subrange size scale Lb varies with altitude but is approximately 0.8

km between the altitudes of 98 km and the turbopause. This value is pre-

dicted by the requirement that the characteristic buoyancy kinetic energy

per unit mass½ v_ must be less than the observed turbulent kinetic

energy per unit mass.

_Suggestedmodifications are madefor the form of the shear and

energy spectrums of the turbulence. The experimental evidence supports

the validity of these alterations and also allows evaluation of someof

the constants which appear in the spectral law formulas. Both the spec-

trum functions and correlation techniques are used to determine the max-

imum scale L of the turbulent winds and the vertical scale of the totalo

winds. The vertical scale of the total winds is found to vary approxi-

mately as the pressure scale height over a wide altitude region. The

maximumvertical scale of the turbulent winds also varies with altitude_

having a value of about 7 km at an altitude of i00 km. The maximumhor-

izontal scale of the turbulent winds at i00 km is found to be about i0

km. Thus the strong vertical wind shears present introduce only a slight

anisotropy into the turbulence.

The turbulent mixing length is found to be about 0.75 km beiow the

turbopause and to be rapidly increasing above this altitude. Thus the

mixing length and maximumbuoyancy scale are approximately equal in the

region immediately below the turbopause@ The viscous cutoff size and
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time scales L and T z calculated theoretically_ are not inconsistent with

observation. Howeverz these small scales cannot be observed with the res-

olution attainable with present data gathering techniques. Theoretical

relations amongthe eddy scales Lo_ L and the dissipation length Ld_ pre-

viously derived for isotropic non-buoyancy turbulence_ must be modified

because of the important buoyancyeffects present.

"I_e characteristic time scale "r of the largest turbulent eddies is
'_, 0

found to be 300 to 330 sec I Thus chemical cloud lifetimes of about i0

minutes allow ample time for observation of most_ if not all of the tur-

bulent spectrum. The observed value of T is approximately equal to theo

period 2W/Ws__ where w is the observed magnitude of the total wind shear.S

_The usual Richardson_ Townsend and Layzer criteria for the onset

of turbulence are examined and found to be unsuccessful in explaining the

observed turbulence cutoff near 106 km. However, a generalized Richardson

criterion is derived which does successfully predict turbulence only below

106 km_i This generalized Richardson criterion is based on the energy

requirement that the characteristic buoyancy kinetic energy per unit mass

i 2
vb must be less than the turbulent kinetic energy per unit mass which

can be produced by wind shears.

The Reynolds criterion is also examined. It is found that this

criterion will allow turbulence up to at most only a few kilometers above

t_e observed 106 km turbopause. However_ theoretical uncertainties as

to the proper application of the Reynolds criterion in a free atmosphere

may mean that the only restriction this criterion places on the turbu-

fence is an absolute upper limiting altitude of 120 to 140 km.



CHAPTER I

ENERGY BALANCE

Introduction

In order to be characterized as turbulence_ the motion field must

satisfy certain requirements. It must be three dimensional, nonlinear _

diffusive_ rotational and dissipative, mechanical energy being transformed

to internal energy through a cascade of eddies of diminishing size. The

cascade_ ending in viscous dissipation of energy from the smallest eddies 3

is connected with the nonlinearity_ three dimensionality and rotationality

of the field. The velocity components must be distributed irregularly

and aperiodically in time and space.

The diffusive nature of turbulence is responsible for the transport

of properties such as massj momentum and heat. The transfer rate of the

properties is3 in general_ greatly increased by the action of the turbu-

lence. Time and length scales of the property-transporting motions are

usually large compared to intermolecular dimensions and are often as large

as the scales of the distribution of the transported properties. For this

reason_ turbulence is a continuum phenomenon.

The fact that turbulence is rotational_ in the _gydrodynamic sense

of the word_ does not mean that the motion of the eddies is actually one

of rotation. In fact_ such two dimensional rotating motions as vortex

sheets and whirlpools are not to be considered turbulence_ according to

the above definition. An eddy is_ instead, merely a portion of the fluid

which moves more or less coherently with respect to the mean motion.
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Alternatively_ as a more mathematical description_ an eddy may be consid-

ered as a component of the Fourier integral expansion of the velocity

function° The expansion is usually made with respect to the wave number

ko The associated eddy size _ for wave number k is just _ = k-I.

Photographic tracking of chemical release clouds [Justus et al.,

1964a, 1964b] provides information on the wind profile V(z) over a wide

altitude range. The total winds are made up of prevailing, periodic tidal

wave_ gravity wave and turbulent components. Mean winds obtained from

chemical release tracking provide averages over the cloud lifetime, which

is typically five to i0 minutes. Frequently many protuberances in the

form of nearly spherical globules appear on these clouds below about 106

kmaltitude. Individual tracking of these globules_ or other identifiable

cloud features_ yields time varying winds. The intermediate time scale

winds, v, are obtained by subtracting the average wind profile velocities

from these time varying winds. Because of the relatively short lifetime

of these clouds, large time scale gravity wave and/or turbulent components

would be considered as part of the mean winds. However, results indicate

that the "intermediate" scales of turbulence observable by chemical re-

lease tracking constitute most_ if not all of the larger scales in the

turbulent spectrum.

Several investigators have observed that above some altitude near

105 km molecular diffusion accounts for all of the chemical cloud expan-

sion while below this _ _ ..... _ _ _--_I_±_ _±_r_ed diffusion caused uj turbulence

takes place. Usually the globular structure of chemical releases exists

only up to an altitude close to this transition point, the turbopause,

where conditions change from turbulent to laminar. However, Cote [1965]



has pointed out that accelerated diffusion can be observed on sodium

trails which have no globular structure.

There are three possible mechanismsfor the production of the

globular structure in chemical releases: (i) A reaction of the release

vehicle or ejection mechanismcreates the turbulence and the globular

structure directly. (2) The turbulence is naturally occurring ambient

turbulence and provides an unstable mediumin which small fluctuations

in the releasing of the chemical lead to globular structure of the

cloud. (3) The turbulence is ambient in nature and provides the velocity

fluctuations which produce the globules directly.

Comparison of the intensity and duration of the observed turbu-

lence on chemical releases and meteor trails (see Appendix A) rules out

the first of these. Cote's observations rule out the third and support

the second mechanism. The cases in which globules are not produced in

the turbulent zone are ones in which the cloud chemical was released at

a very unifo_m rate or in a small concentration. The altitude at which

globules cease to appear on a chemical release cloud is thus in most

cases a good estimate of the turbopause altitude. Observations of the

globule cutoff altitude on 21 chemical releases yielded an average value

of 106 km±4 rms.

The globules appear to have an especially sharp edge on cesium

clouds observed under twilight conditions by their infrared resonance

radiation. However_globular str_cturc has been obsei-_edon several

types of chemical clouds both at twilight and during the night. Chemi-

cal clouds with globular structure have an appearance similar to the

globular structure of cumulus clouds or the man_nilatedunder surface of



cumulonimbusor stratocumulus clouds in the lower atmosphere.

Although the chemical release globules depend on turbulent eddies

for their existence_ the globules themselves are not to be identified as

eddies_ since the globules are acted on by the eddies and expand by tur-

bulent diffusion.

Even on clouds where the globules appear sharpest_ they become

generally smaller with decreasing altitude and in the vicinity of 90 km

cease to have their customary near spherical shape. Below this altitude

the clouds appear generally fuzzy but have no spherical globular structure.

Definitions of the Energy Balance Terms

Since turbulence is dissipative_ statistically steady turbulent

motion requires the existence of a continuous external energy source.

If the air is thermally unstable_ the potential energy of the unstable

arrangement can supply the energy for turbulence. In a stably strati-

fied region of the atmosphere_ such as above the mesopause at about 85

km_ wind shears provide the only source of energy for maintaining turbu-

lence. Stable stratification also makes it possible for energy to be

dissipated from the air motions by the effects of buoyancy forces.

For statistically stable turbulence in a stably stratified medium_ "

the energy balance equation for the turbulent kinetic energy per unit

mass may be written

: + (!)
s g

where _ is the rate per unit mass at which kinetic energy is being sup-s

plied to the turbulence by wind shears; and ¢ and _ are the rates per
g

unit mass at which kinetic energy is being dissipated by buoyancy and



viscous forces, respectively.

Townsend[1957] gives the relations

¢ = _ _Vi
S V.V.

i, j i J _x.j

(2)

and

gi¢ = 8v. - g 8v
g -T- z T z

(3)

where g is the acceleration of gravity, T is the mean temperature and 8

is the fluctuation in temperature. The temperature fluctuation is the

difference between the temperature of a fluid element and the mean tem-

perature at the altitude of the element. If a fluid element, initially

in temperature equilibrium at a height z, is displaced adiabatically to

the altitude z + _ , and assumes the ambient pressure, the temperature

fluctuation is given by

 (z)C_ + _ ,
P

(4)

where C is the specific heat at constant pressure. For an ideal gas
P

g/Cp is equivalent to < _-_)(Mg/R), where _ is the ratio of spe-

cific heats, M is the molecular weight and R is the universal gas con-

stant. For the altitudes of interest here either expression may be

used without appreciably altering the calculations. The parameter Wg,

defined by

g T _ +
P

(5)
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has units of inverse time and is the frequency of harmonic oscillation

[Nawrocki and Papa, 1963] which a fluid element would experience after a

small displacement from its equilibrium altitude.

When a fluid element leaves the level z and carries momentum to

the level z + _ , a fluctuation in velocity of magnitude v is produced.

This horizontal turbulent velocity would be given by

_V
x

v =v +_)-v ) _x x(z x(z _z (6)

Therefore the use of (5) and (6) in equation (3) produces an approximate

relation for ¢ given by
g

2 v v
c = (D x z

g 8V x
g ( _.if__/

(7)

Lamb [1945] gives a relation for ¢ in a viscous compressible fluid,

which can be put in the form

(8)

where _ is the kinematic viscosity and _ indicates a sum over the full

cyc
cyclic range of components. For an incompressible fluid the last term

in (8) would be identically zero. If the turbulence is also isotropic,

it can be shown [Taylor, 1935] that (8) reduces to

= 6_ \_-j + \_-_-j + _z_x By
(9)



which can be further reduced to

(io)

Turbulent Diffusion

Cote [1962, 1965] has summarized several theories of turbulent

diffusion. Several relations he discusses can be put in the form

d2 6-2n n-2 tn
~ V ° (11)

where d is the diameter of the diffusing cloud at time t after its

injection and v is the rms turbulent velocity. The exponent n in (ii)
o

can take on the values 2,3,4 or 6 depending on the form assumed for the

turbulent energy spectrum or on other assumptions about the nature of

the turbulence. Note that n = 3 in (ii) eliminates the dependence on v .
O

There are at least three theories which predict t3 dependence in (ii).

One due to Batchelor [1950] is based on Kolmogoroff's similarity prin-

ciple and predicts the specific form

d2 _ 16 e t3
3

(12)

Lin's theory [1960] of turbulent diffusion predicts

d2 _ 4 B t3
3

(13)

where B is a parameter which Lin proposes to be proportional to ¢ through

some universal function of the Reynolds number. Tchen's theory [1961] of

diffusion in turbulent shear flow predicts d2 ~ t2 for high shear fields
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and _2 ~ t3 for low shear fields. Tchen's predictions for diffusion in

shear turbulence are based on his earlier derivations [Tchen, 1954] for

the energy spectrum E(k), to be discussed in Chapter II. The predicted

SV.

form for E(k) depends on the magnitude of the shear V' m
- _x. ' and the

J

expected diffusion law depends on the form of E(k). For large V'_ the

_z'edicted forms are E(k) ~ V'k -I and d2 ~ t2. For small V'_ the spec-

Tral and diffusion law forms become E(k) ~ k -5/3 and d2 ~ t3.

The diffusion theories of Bathhelor_ Lin and Tchen do not take into

account the effects of buoyancy. Bolgiano [1959] has suggested that the

necessity for including _ in the energy balance equation for a stably
g

stratified portion of the atmosphere leads to alterations in the energy

spectrum E(k). The expression for 6g, given by equation (3), contains

t_e covariance ev of the temperature fluctuation and the vertical tur-
z

bulent velocity. A positive value for this covariance indicates that

turbulent kinetic energy is being converted to potential energy by the

buoyancy effects associated with the turbulence working against gravity.

Bolgiano suggests that if the Reynolds number (see Chapter I) is suffi-

ciently large there will be a subrange of wave numbers k over which this

covariance remains positive. This energy extraction in the buoyancy sub-

range means that the viscous dissipation ¢ may be significantly less than

the rate of generation of turbulent kinetic energy _ . The difference in
s

these terms is Cg_ the work done against buoyancy.

.LI_ -- ..o ....... .4 . _

Boigiano suggests that u11_ _m_u_ban_ of this energy extraction by

the buoyancy effects means that ¢ and w are the important parameters
g g

which determine E(k) in the buoyancy subrange. He predicts the form E(k) ~

k -II/5 in this subrange. This alteration in E(k) in the buoyancy subrange



should lead to an associated alteration of the diffusion law. Assuming

that the parameters ¢ and _ also determine the diffusion law in the
g g

buoyancy subrange_ Bolgiano derived a t 5 law for this subrange which is

given by

d2 = _w2 c t 5
g g

where the dimensionless constant _ is of order unity.

Therefore if observations of actual turbulent diffusion yield a

tir_e exponent compatible with (iI)_ e can be calculated. However_if a

t 5 diffusion is observed_ this would indicate the existence of a buoy-

ancy subrange with the diffusion law being independent of c .

Experimental Evaluation of the Energy Balance Terms

The turbulent winds v_ determined as outlined in the introduction_

may be used in (2) and (7) to determine _ and c . The strong vertical
SV SV s g

Jshear components 87 and for a given set of wind data are easily

determined from the wind profile. The horizontal shear components are

taken to be about 0.05 m/sec/kmas indicated by velocity differences

obtained from chemical trails separated by several tens of kilometers

[cf. Rosenberg and Justus, 1965]. Values of w may be calculated from
g

1962 U. S. Standard Atmosphere data. By approximating derivatives with

ratios of finite differences_ one may also use the turbulent winds in

io_ (9) _md (i0) to calculate _, again using 1962 U. S Standard Abmos-_]_

phere data to calculate _ The formula used for this purpose is

: 1.458 x 10 -6 T 3/2 (m2/sec) ,

p (T+ llO. )
15)
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where T and p are the atmospheric temperature and density in OKand kg/m3.

Relation (15) yields an unknownamount of uncertainty in _, but it must

be used since tabulated values are not given above 90 km.

Turbulent wind data from several chemical releases have been ana-

lyzed and_ although there is a fairly large scatter in the data points_

an exponential function represents the height variation of _ very well for

each of the three cases (8), (9) and (i0)o Roper [1963] has reported a

rather large seasonal variation in _ as determined from meteor trail in-

vestigation. Undoubtedly there is someseasonal variation as well as

diurnal and even small scale spatial variation in ¢ This could be re-

sponsible for muchof the scatter in the calculated _ values obtained from

the chemical release data. However_there is not a sufficient amount of

these data for analysis of the variations to have any statistical signif-

icance. An exponential function fit to all of the observed data would

thus represent an appropriate average over the different seasons_ times

of day and spatial locations from which the data were obtained. Figure i

showsthe exponential functions obtained by a least squares fit of the

data calculated from equations (8), (9) and (i0). Each curve shows c to

be increasing more rapidly than the kinematic viscosity _ which is also

shown in Figure i for reference.

Globule sizes versus time have been measuredfor several chemical

releases launched at both morning and evening twilight. Globules that

can be observed early in their lifetimes show an unusual growth behavior.

Figure 2 shows an example of the globule growth curves obtained. The

case illustrated is a cesium globule at 97.7 km. The general behavior of

globules exhibiting the anomalousearly growth is a very rapid expansion
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during the first 150 _ 40 seconds after release, followed by a period of

almost no growth which lasts for 50 ± i0 seconds. After the period of

slow growth, called the level phase, the globule expansion rate increases

but the growth does not proceed as rapidly as during times before the

level phase. Although apparent anomalies in globule growth could be pro-

duced by changing sky background or changing camera f/stops, the observed

level phase is apparently a real effect. This is borne out by the con-

sistent height variation of the diameter at which the globule growth levels

off_ as illustrated in Figure 3. This graph shows that the diameter at-

tained at the time of the level phase is nearly constant between 98 and

106 kmbut undergoes a fairly rapid variation below and above these

altitudes.

For comparison with turbulent diffusion formulas, the growth curves

are best plotted in the log-log form shown in Figure 4_ which shows the

same growth curve illustrated in Figure 2. Figure 4 shows an initial ex-

pansion according to d2 ~ t7 ± 2
• As determined from all globules observed,

d2 _ t5 + ithe average initial growth follows a expansion, indicating that

_he initial growth is due to the effect of a buoyancy subrange. The aver-

age observed constant of proportionality for d2 ~ t5 diffusion is 0.6 x

10 -4` m2/sec 5. However, measurement inaccuracies at small globule diameters

mean that this value is probably accurate only to within about a factor of

three. For the 90 to 105 km range, equation (7) yields approximately

0°35 watts/kg for ¢ and w2 is about 6 x 10 -4 sec -2 in this height inter-
g g

val. _e_'efore the obse_¢ed globule growth in the early phase is

d2 0.3 w2 t5: c (16)g g
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with a probable error of a factor of three in the numerical constant.

_.is is better than mere qualitative agreement with the t5 diffusion

equation (14) for a buoyancy subrange. The t5 growth occurs only at

small globule sizes because energy balance considerations limit the buoy-

ancy subrange to small globule scales. This limitation of the buoyancy

subrange to small scales will be discussed more fully in Chapter III

which deals with scale sizes.

Figure 3 shows that the maximum size scale affected by the buoy-

ancy subrange is decreasing with decreasing altitude. This accounts for

the spherical shape of the globules in the 90 to 106 km region and the

more fuzzy appearance of the clouds below 90 km. The motions in the buoy-

ancy subrange are somewhat more ordered than those in the larger scale

range° In the 90 to 106 km region the buoyancy subrange can affect the

cloud structure during a comparatively long period of its initial growth

and can shape the cloud into regular spherical globules. At lower alti-

tudes the buoyancy subrange cannot act on the cloud elements for a suffi-

cient length of time to form spherical globules and the motions of scales

larger than the buoyancy subrange break up the cloud into a fuzzy ap-

pearance.

When the t5 growth becomes inoperative the small growth during the

level phase can be accounted for by molecular diffusion alone. For the

globule growth shown in Figure 4 the value of d2 at the cessation of the

t5 expansion is 2.2 x 105 m2. At the end of the level phase the value of

d2 is 2.9 x 105 m2. Since for this globule the level phase lasts about

55 seconds_ the observed growth during this period would be accounted for

Ad 2
by a molecular diffusion coefficient of D = A_-_ 2 x 102 m2/sec, a
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reasonable value for cesium at 98 km.

Since molecular diffusion is important during the level phase

growth_ +he sharpness of cesium globules compared to those on other chem-

ical clouds may be due to the fact that cesium_ the heaviest cloud mate-

rial used_ has the smallest molecular diffusion coefficient° However_

cesium must be observed at twilight ty its resonance radiation_ and the

s_arpness of the globules may be merely a function of the optical density

of _he released cloud material.

After the end of the level phase_ globules again undergo an accel-

erated power law diffusion. For the globule growth shown in Figure 4 the

expansion follows d2 - t2"6 • 0°3. Since the exponent is close to three_

the power law for globule growth in this phase was determined by least

squares analysis using the formula

d2 16 n-2 tn

which allows determination of n and _ . The numerical factor in (17) is

taken from (12)_ since none of the other turbulent diffusion formulas pre-

dicts a specific value for this constant. This "constant" may even vary

mt_ altitude if (13) is applicable_ since the Reynolds number varies with

altitude o The average value of the exponent n obtained from many globule

observations is 3°0 +_ 0.4 rmSo Figure i shows the best least squares

exponential curve which fits the height variation of _ determined from

the globule diffusion. Although this method of determining _ is independ-

ent of the calculated values of _ _ this graph also shows a rapid increase

of c with altitude.
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From measurements of diffusive growth of turbulent trails Cote

[1965] observes a d2 ~ t2 expansion_ in disagreement with the globule

diffusion d2 ~ t3 reported here° However_ Cote points out that diffi-

culties in accounting for changing sky background make it impossible for

his observations to completely rule out d2 ~ t3 diffusion. Cote's

observations are dependent on sky background because they rely on densi-

tometric determination from the cloud image on film of the shape of the

profile of cloud light emission above that of background. _e same sky

background difficulties would admittedly plague the globule measurements

reported here_ but_ since d2 t3 globule diffusion has been observed

against both increasing and decreasing sky background_ the effects of sky

background change seem to be minor. Globule expansion can rarely be meas-

ured beyond diameters of about three km. Therefore an alternate method_

independent of sky background_ for measuring large scale diffusion effects

would be most helpful in determining if Cote's d2 ~ t2 result indicates

a transition to a different diffusion law at large scales (as might be

expected from Tchen's theory) or is merely an effect of sky background.

One possihle method for studying large scale turbulent diffusion would be

by observing the growth with time of the separation distance between pairs

of globules at approximately the same altitude. These measurements would

be independent of sky background.

Although the agreement between the several estimates of _ shown in

Figure i seems to be embarassingly poor_ Figure 5 shows that it is actually

much better than the agreement between estimates of _ obtained by various

investigators at lower altitudes. This figure shows a sun_nary by Lettau

[1961] of values of _ obtained from diffusion and wind profile observations
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in the altitude range from one cm to 40 km. The uncertainty in _ is as

much as three orders of magnitude at some of these lower altitudes. This'

fact plus the uncertainties in _ and the numerical constant in (17) makes

the agreement in the graphs of Figure i seem good indeed° Figure 5 also

shows _he variation of the average ¢ determined from the chemical release

data° The observed height variation between 90 and ii0 _m fits well with

the lower altitude data_ under the assumption that _ continues to decrease

with decreasing altitude_ diminishing by approximately an additional three

orders of magnitude from 90 to 30 km°

The average e obtained from the four curves in Figure i is plotted

in Figure 6o This figure also shows the exponential curves fit by least

squares to the data points for e and _ obtained from formulas (2) and
s g

(7)° Due to scatter in the e and e data points, these curves are prob-
s g

ably accurate only to within about a factor of two. To within this limit

of accuracy e = e + e holds for the curves shown over the height range
s g

from 92 to 106 km° The e curve intersects the e curve at 106 km and
s

because _ continues to increase rapidly_ the energy balance requirement

¢ _ _ means that turbulence cannot be maintained above this altitude.
s

T_is 106 km intersection agrees well with the average observed cutoff

altitude for globule formation. The observed region below 98 kmwhere

¢ _ e is also physically impossible if turbulence is to exist there_ but
g s

this discrepancy can easily be accounted for within the possible errors in

the ¢ and e curves.
s g
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CHAPTER II

SHEAR AND ENERGY SPECTRUMS

Previous Energy Spectrum Theories

According to the theory of homogeneous turbulence developed by

Kolmogoroff [1941 a; 1941 b] the turbulent field may be characterized by

three scale ranges. For eddy scale { the three scale ranges; in terms of

-i

k = { , are: (i) the large scale fluctuations 0 < k -< ko, which carry

the turbulent energy extracted from the mean flow at a rate per unit mass

¢s_ (2) the isotropic inertial subrange which has random statistical prop-

erties and transfers energy from larger to smaller scales with negligible

energy loss and (3) the viscous dissipation region k < k < _ where the

kinetic energy of the smaller eddies is dissipated by viscous forces at

a rate per unit mass ¢. Since no buoyancy forces are present in this

theory; the energy balance equation is just _ = ¢ Figure 7(a) shows
s

schematically the energy spectrum E(k); the energy per unit mass for wave

numbers between k and k + dk. In the inertial subregion E is a function

of ¢ and k according to the Kolmogoroff theory.

Bolgiano [1959] has proposed a theory which accounts for buoyancy

effects and divides the energy spectrum into four subranges as shown in

Figure 7(b). The large scale range 0 < k < k and the viscous dissipation
o

_ange k < k < _ remain as before. The region between k and k is divided
o

into a buoyancy subrange k < k < E(eo - - _ in which E = ,k) and the usualg

inertial subrange only in the range _ < k < k*- - in which E = E(¢ ; k).

!_ne energy balancy equation is ¢ = ¢ + ¢ ; where e is the rate per unit
s g g
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mass at which kinetic energy is removed from the turbulence by the buoyancy

action.

The results of Chapter I_ however, indicate that the buoyancy sub-

range affects only the small scale (hence large k) sizes, and that turbu-

lence is observed at larger scales (smaller k) than those affected by buoy-

ancyo Hence the actual energy spectrum must be something like the one

shown schematically in Figure 7(c)_ with the inertial subrange in the re-

k _ _ _gion k ° _ _ _ and the buoyancy subrange in the region kb _ k _ k . Ex-

perimental determination of the smallest buoyancy scale kB shows it to be

approximately equal to k . It is an energy balance requirement which de-

mands the upper scale cutoff of the buoyancy subrange, as will be discussed

in the following chapter. Data are presented in this chapter which support

the assumption that E = E(_s, k) in the inertial subrange and E E(_g_ k)

in the buoyancy subrange with E(_g_ k) being the form predicted by Bolgiano

and E(es_ k) coming from existing non-buoyancy theories but obtained by

substitution of e for _ in the functions E(_ k) which they predict.
S

Definitions of the Spectrum Functions

The spectrum theories discussed in the previous section are actu-

ally applicable only for non-shear turbulence or for turbulence in which

wind shears do not impose a significant anisotropy on the motion field.

_v av
x __X

As mentioned in Chapter I; there are strong vertical shears _-_- and _z '

but the horizontal shears are small in magnitude. Thus the turbulence

in the upper atmosphere could be anisotropic in the vertical direction.

Evidence presented later in this chapter indicates; however; that these

shears do not introduce a drastic anisotropy. Therefore it seems reasona-

ble that the concepts of division of the energy spectrum into the subranges
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shown in Figure 7(c) is reasonable, but that the actual form of the energy

spectrum E(k) should come from shear turbulence theory. Tchen [1954, 1961]

has formulated such a theory.

Two important spectrums describing turbulent shear flow are the

energy spectrum E(k), previously defined, and the shear spectrum F(k),

which has a similar definition with respect to the shear across eddies of

wave number between k and k + dk. Both E(k) and F(k) have dimensions of

(length)3/(time) 2 .

If one uses Tchen's theory and substitutes c for _ , the spectrums
s

E(k) and F(k) for low shear fields in the inertial subrange of shear tur-

bulence Ere given by

E(k)=  2/3k- /3 (lS)
s

and

s

where _ is a dimensionless constant of order unity and _ is a parameter

which depends on the mean flow and has units of frequency (or shear).

Equation (18) is the same form predicted by Kolmogoroff's theory,

except for the fact that c = ¢ in that theory but _ _ _ for shear tur-
s s

bulence with buoyancy effects. Relation (18) is also justified by the

fact that Tchen's theory for low shear fields predicts the d2 ~ t3 diffu-

sion observed from globule expansion.

For upper atmospheric turbulence it is difficult to measure the

spectrums E(k) and F(k) directly. However, the methods developed by

Blamont and de Jager [1961] and extended by Zimmerman [1962] allow infor-
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nation about the spectrums to be obtained from the spectrum functions E(k)

and F(k), defined by

oo

_(k) = _ _,(k)d_
k

(20)

and

oo

2(k) : [ F(k)dk
k

(21)

These are essentially the spectrums E and F averaged over all eddy scales

up to _ = k -I. Neglecting the effects of the change in E(k) for k >kb,

one may substitute (18) and (19) into (20) and (21), obtaining

_ 3 e2/3 k-2/32!_) = _ ¢2/5 k"5/3dk - 2 _
s k s

(22)

and

k_ 3 ¢1/3 k-4/3
F(k) : _ ¢1/3 k -7/3 dk = _ 5 s

S

(23)

In terms of the eddy scale { ; these relations would be

3(% ¢2/3 {2/32({) : _ s (24)

and

3 e-_-/3_4/3F(_) - 45 s (25)

Experimentally_ the functions E and F may be evaluated by averages
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over the velocity field. The observed spectrum functions E and F are
o o

2

(26)

and

(27)

where the averages are taken over some range of altitude z.

Another spectrum function of importance is the motion spectrum

function_ which comes from homogeneous non-shear turbulence theory and is

defined similarly to (26) by the relation

f(_) = <E_(z) - -v-(r.£)]2> , (28)

where the average is taken over the vector position £_ _ is a vector dis-

placement from _, and 6 is the magnitude of the vector 6. Batchelor [1947]

has shown that this function is given by

f(6) = ,r _2/s62/s/l1+ 8_/_ _2/s82/s (29)
s \ 362/ Y s '

where 7 is a dimensionless constant of order unity and 61 is the component

of 6 in the direction of the turbulent wind component v. Again ¢ has been
-- S

substituted for ¢ in the original formulas_ but for homogeneous non-shear

turbulence with no buoyancy_ to which the original theory applies_ c = ¢
S

Experimental evidence presented in the following sections justifies the

use of ¢ in (29) and the other spectrum functions.
S
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Experimental Evaluation of the Spectrum Functions

Photographic tracking of chemical trails provides information on

the wind profile over an extensive altitude range. The total wind profile

contains prevailing, periodic tidal wave and gravity wave winds_ called

collectively the mean winds, plus the small and possibly large scale tur-

bulent components. An attempt to eliminate the mean winds can be made by

subtracting an arbitrary function of altitude_ resulting in a profile of

residual winds.

Total wind profile data were available from approximately 30 chem-

ical releases covering sufficient altitude to employ this procedure. Data

from each of these were divided into two altitude regions_ 90 % z _ ii0 km

and ii0 % z % 140 km. A least squares fit parabola in each altitude range

was subtracted from the north-south and east-west wind components to obtain

the residual winds. The shear and energy spectrum functions for both total

winds and residual winds were then obtained from (26) and (27). Data were

also available from two releases in the 70 to 90 km altitude region, but

these have not been included since the results were not statistically

significant.

Figures 8 and 9 show typical shear and energy spectrum functions

of the residual winds in the lower altitude range_ plotted on log-log

scale for easy determination of the exponent of _ . The quantity graphed

in Figure 9 is just the velocity difference part of equation (27)_ omitting

the factor ½. Both graphs show exponents in the small _ region which are

in reasonable agreement with the ones expected from equations (24) and

and F of (26) and (27) are not, however,The observed functions Eo o
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identical with the theoretical relations (24) and (25). Since the method

of obtaining the residual winds leaves some contribution from the mean

wind profile, E and F are related to E and F by
o o

: (30)

and

where _i and 92 are dimensionless factors required to compensate for the

contributions from the mean winds; and which increase as this contribution

becomes larger.

Tables i and 2 show the results of averaging all of the exponents

of the shear and energy spectrum functions of both total and residual winds

in the two altitude regions. Averages were taken of data from all releases

as well as separate averages for morning twilight and night releases.

The observed average globule cutoff altitude was 106 kmfor the

releases studied. Thus the 90 to ii0 km region embraces the turbulent

zone while the ii0 to 140 km range lies above the turbulent zone.

Tables i and 2 show that above the turbulent zone the average expo-

nents of both shear and energy spectrum functions are higher than those

expected from equations (24) and (25). In the turbulent region the expo-

nents of both shear and energy spectrum functions are in better agreement

with (24) and (25), but the values are still slightly high. The exponents

obtained from the residual winds come closer to the expected values than

do those of the total winds. For the total winds, the nighttime exponents

of both E and _ tend to be higher than the morning twilight values.
o o
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Table i. Average Shear Spectrum Function Exponents

Height

Range

Total Winds

All Twilight Night

Releases Releases Releases

Residual Winds

All Twilight Night

Releases Releases Releases

90-ii0 1.49 1.25 1.51 1.47 1.50 1.43

_ii0-140 1.74 1.75 1.74 1.55 1.59 1.51

Table 2. Average Energy Spectrum Function Exponents

Height

Range

Total Winds

All Twilight Night

Releases Releases Releases

Residual Winds

All Twilight Night

Releases Releases Releases

90-110 0.77 0.70 0.79 0.70 0-73 0.66

_Ii0-140 0.84 0.83 0.85 0.78 0.82 0.75
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For the residual winds_ the twilight exponents are lower than the values

for nighttime_ the twilight turbulent zone exponent being approximately

equal to the nighttime value above the turbulent zone.

For chemical releases with many identifiable features, separate

photographic tracking of these features provides several wind velocities

in each kilometer section of altitude. The motion spectrum function f(5)

can be obtained by averaging velocity differences according to (28) with

5 representing displacements which remain within a one kilometer altitude

range of the position r, of equation (28). By thus confining the averages

to essentially a horizontal plane_ the effects of the vertical shear can

be eliminated and the non-shear turbulent motion spectrum results. This

procedure has been applied to 13 chemical releases in the approximate

height range 90 to ii0 km. The resultant average motion spectrum function

for each wind component is plotted on log-log scale in Figure i0. A super-

imposed line of slope 2/3 is seen to fit the data well for horizontal dis-

placements of seven km or less. Thus equation (29) accurately describes

the horizontal non-shear turbulent motion spectrum function.

The Buoyancy Subrange

According to the buoyancy theory of Bolgiano [1959], buoyancy forces

act to oppose vertical motions and remove kinetic energy from the turbu-

lence over the wave number range k _ k _o - - kB. The predicted energy spec-

trum in this region is

E(k) = S ¢2/5 co4/5 k-ll/5 (32)
g g

where e is a dimensionless constant and w was defined in Chapter I. The
g
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eddy scale LB = _i above which the buoyancy effects become important in

the Bolgiano theory is given by the relation

c5/4

LB = ¢3/4 ®3/2
g g

(33)

If values of ¢ and ¢ are taken from Figure 6, and the value 2.4 x 10 -2
g

-i

sec is used for Wg, the calculated values for LB at heights of 95, i00

and 105 kmare about i, i0 and i00 m, respectively. Since the scale of

* *-l
the smallest eddies L = k is about 20 to 40 m in this height range,

there is little or no portion of the spectrum which could form an inertial

subrange in the region k B _ k-_ k . Therefore, the assumption that the

buoyancy subrange occupies the entire wave number range kb _ k _ k is

justified.

Roper [1963] has proposed a buoyancy subrange which, unlike the

one predicted by Bolgiano, affects only the small scale eddies with wave

numbers in the range kb _< k _< k as indicated in Figure 7(c). The largest

buoyancy scale Lb = _i is determined by requiring that in the altitude

range over which buoyancy effects are important (possibly only the 90 to

ii0 km region), the buoyancy kinetic energy per unit mass ¼Lb 2 w2 must be
g

less than or approximately equal to the turbulent kinetic energy per unit

i 2
mass _v . Roper's data, obtained from meteor trail wind analysis, indicate

that L b _ 0.7 km. Figure 3 shows that this value is in good agreement with

the observed largest buoyancy scale in the height region 98 to 106 km, as

determined from globule growth studies. Since the t5 buoyancy subrange

diffusion discussed in Chapter I agrees with Bolgiano's theory, it appears

that this theory adequately describes the buoyancy effects if the energy
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balance large scale cutoff is included. Therefore the Bolgiano energy

spectrum (32) presumably applies to the observed buoyancy subrange.

Since the energy spectrum is modified for small scales by the ex-

istence of the buoyancy subrange, the observed energy spectrum function

Eo(_) should also be modified for _ $ 0. 7 km. However, this effect was

undoubtedly masked by the method used for obtaining Eo(_) for _ _ I km.

These values were determined from interpolation between wind profile data

points which were spaced not less than one km apart. Roper [1963] reports

that spectrum analysis of turbulent winds obtained from meteor tracking

does show anomalies in the scale range _ $ 0.7 km. The buoyancy effects

may also be a contributing factor to the slightly high exponents observed

for Eo and Fo, since substitution of (32) into (20) would yield E(_) ~ _6/5

for _ in the buoyancy subrange, a higher exponent power law than (24).

Evaluation of Constants in the S_ectrumFunctions

The values of the constants _ and _ in the energy spectrum E(k)

and the motion spectrum function f(8) may be evaluated by a refined pro-

cedure similar to one developed by Roper [1963]. The turbulence power ¢

is given by

¢ = k2 dk
0

(34)

Since the integral is dominated by the inertial and buoyancy subrange

contributions 3 this is approximately

¢ = 2_ ¢2/3s _kkbo kl/3 dk + 2_ @ ¢2/5g w4/5_g k -I/5 dk.
(35)
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At _ the inertial subrange energy spectrum (18) must equal the buoyancy

subrange energy spectrum (32). This implies that

 /15O_ s
e -

c2/5 w4/5
g g

(36)

and that the buoyancy subrange energy spectrum (32) may be written as

E(k) = _ _2/3 _/l_ k-ll/5 .
S

(37)

The use of this result in (35), and the performance of the integration

produces an equation which has _ as the only unknown. Neglecting terms

not containing k causes only five per cent error or less. The resultant

equation, solved for _ , is

2 c4/5 L_/15

O_ - 5 112/5 ¢2/3 ' (38)
S

where the well known relation k = (¢/_3) has been used. If values of

Lb, ¢ and ¢ are obtained from Figures 3 and 6, and 1962 U. S. StandardS

Atmosphere data are used to evaluate _, equation (38) yields values of 0.6

and 1.6 for _ at altitudes of i00 and 105 km_ respectively.

Equation (38) can be used in (36) to produce the simpler relation

for e given by

_ )2/5
2 e-

g g

, (39)

which yields values of 0.08, 0.3 and 0.8 at altitudes of 95, i00 and
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105 km, respectively.

The constant _ in equation (29) for the motion spectrum function

can be evaluated from Figure i0 by taking i00 km as the representative

altitude, hence e = 0.37 m2/sec 3 The resultant value for _ is 1 5
S

The turbulent motion spectrum function f(8) may be interpreted as

the horizontal equivalent of the vertical energy spectrum function Eo(_).

Thus comparison of equations (24) and (29) shows that y = 3 (_ . Since'

y = 1.5, this implies (_ = 1.0, in good agreement with the average value

of (_ determined from equation (38).

The maximum in f(8) in Figure i0 indicates a horizontal scale of

i0 km for the turbulent winds. Previously [Greenhow and Neufeld, 1959a,

1959b, 1960] the horizontal scale of the turbulent winds has been estimated

as 200 km. However, Hines [1960] later attributed this horizontal scale

to the gravity wave component of the total winds. The reason why this max-

imum in f(8) implies a I0 km scale for the turbulent winds is discussed in

the following section•

Equating the observed maximum in f(8) (_ 330 m2/sec 2) with l_ the
20'

kinetic energy per unit mass of the largest eddies, implies that U = 26
o

m/sec. The vertical scale at i00 km is approximately seven km, indicating

only slight anisotropy of the inertial subrange due to shear influence. If

the largest eddy scale L is taken as seven km instead of i0, evaluation
O

of f(8) at 8 = 7 km implies U° = 23 m/sec. Presumably the most appropriate

values for L and U are somewhere between the limits seven to i0 km and
O O

23 to 26 m/sec.

If the value (_ = 1.0 is used in equation (24), the parameter _i of

equation (30) can be evaluated from the observed energy spectrum function
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values Eo at somedisplacement_ say one km. The relation for _i is then

m

2E(I )
O

q°l - 3(1000) 2/3 e2/3 (40)
s

U° can also be estimated by taking Lo = 7 km and requiring Eo(Lo) = _°i '

as implied by equation (59) of Chapter III. U is thus given by
O

2  o(7U -- "

o qo1
(41)

Table 3 shows the resultant values for _i and U° at several alti-

tudes. The _i values are seen to decrease with increasing altitude. This

would be expected since the polynomial fitting procedure used to obtain

residual winds should be better for more nearly "monochromatic" upper alti-

tude winds ° The values of U in Table 3_ although agreeing fairly well
O

with the previous estimates_ are consistently low. The U values in Table
O

3 could be reconciled with the estimate U° = 25 m/sec by either of the not

unreasonable choices _ = 1.5 or ¢ increased by a factor of 1.8o Either
S

of these alterations would decrease _i to about two-thirds the values shown

in Table 3.

The Spectrum Functions Related to Scale Size

Tchen [1954] has shown theoretically that for high shear fields both

E(k) and F(k) are proportional to k-I. Thus for high shear fields the re-

lations for E(_) and F(_) would become

ln(1/ ) (42)

and
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Table 3. Values of _i and U Determined from Eo(_)O

He ight

(_m)

2 2o(i_) 2 2o(7_)

(m2/sec 2) (m2/sec 2)

U
o

(m/sec)

90 749 1920 6.0 18

95 730 2100 5.2 20

i00 698 1540 4.5 19

105 649 1420 3.8 19

110 558 1180 3.0 20
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- ln(1/{) (43)

instead of the low shear relations (24) and (25).

The observed shear spectrum function _o({) typically has a nmximum

similar to the maximum at { = 6km seen in Figure 8. In the 90 to ii0 km

region the average { at maximum is seven km. Zimmerman [1962] has sug-

gested that this maximum may represent the transition point from low shear

isotropic turbulence to high shear field anisotropic shear turbulence, the

shear spectrum function changing from the form in equation (25) to that

given in (43). If this is the case, the d2 ~ t3 observed on globules at

small scales should, according to Tchen's diffusion theory [1961], undergo

2 t2a transition to d ~ at this scale size, in agreement with Cote's [1965]

observations. However, Blamont and de Jager [1961] proposed that the max-

imum in _ corresponds to the vertical correlation distance of the motion
o

field.

It is instructive to consider a hypothetical velocity profile v({) =

C sin({); where C is a constant amplitude and { is an appropriate nondi-

mensional altitude. For this case, the shear spectrum function would be

C2 ]02wFo - [sin({) - sin({ + 8{)] 2 d_

: c2 E1 - cos(6{)] . (44)

If this relation is plotted on log-log scale, the resultant curve is qual-

itatively similar to the curve for F in Figure 8. A maximum occurs at
o

8_ = _ (that is, at one half the wave length), but the F of (44) is pro-
o

portional to (6_) 2"0 in the small 8_ region.
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The actual wind profiles (either total or residual) contain compo-

nents of more than one wave length_ but it seems reasonable to assume that

the shear spectrum function maximum should still be associated with the

scale of the predominant wave length (or wave lengths) of the components.

This conclusion is supported by the fact that a similar maximum at 6 =

i0 km occurs in the horizontal motion spectrum function f(6) in Figure i0.

This indicates a horizontal scale for the turbulence of about i0 kmal-

though there is no high shear field which can be associated with the hori-

zantal displacements. The shear and motion spectrum scales will be dis-

cussed more thoroughly in the next chapter. The fact that the E (_) curves
o

do not generally have a well defined maximum like that of the Fo(_) curves_

and hence show no transition from relation (24) to (4_), also supports the

conclusion that the _ (_) and f(8) maximums are to be associated with a
o

length scale of the motion.
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CHAPTER III

CHARACTERISTIC SCALES OF THE MOTION

Definitions of the Length Scales

The characteristic time and length scales of the turbulent eddies

are important parameters of the turbulent velocity field. The chemical

release method provides two means of determining these scales: (i) direct

observation of the globules or structure of the chemical clouds in the tur-

bulence and (2) determination of the scales by analysis of the wind veloc-

ities and fluctuations.

Two important characteristic length scales are Lo, the scale of the

largest, energy bearing eddies (wave number ko) and L , the scale of the

smallest, energy dissipating eddies (wave number k*).

Vertical Autocorrelation Scale

The vertical autocorrelation coefficient G(6z) for the total wind

profile V(z) is defined as

G( 8z )
{<EvIz Ev z+

(45)

where averages are taken over a range of altitudes z. Relation (45) is

appropriate for wind profiles V(z) for which the average over altitude

is zero. If V is not zero than V(z) - V must be substituted for V(z)

throughout this formula. To see how G. is related to a length scale of

the motion, consider a hypothetical wind profile given by V(_) = C sin(_),
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where C is a constant amplitude and _ is an a_propriate nondimensional

altitude. For this "monochromatic" profile G(_) would be

C2_0 2w sin(_) sin(_ + 6_) d_

: = cos(8 ). (46)

C2_0 2w sin2(_) dC

Thus G = i at 6_ = 0 and G = 0 at 6_ = w/2, that is at one quarter wave

length. An actual wind profile is made up from components of many wave

lengths but a general cosine-like dependence is still observed for G(6z).

The value of 6z at which G(6z) first attains the value zero is called the

vertical autocorrelation scal% Lv"

Shear and Motion S_ectrum Scales

The observed shear spectrum function Fo(_) and the motion spectrum

function f(6) were defined in Chapter II, where _ is a vertical displace-

ment and 8 is a horizontal displacement. The shear and motion spectrum

scales, L S and Ls, are defined as the values of _ and 6 at which Fo(_) and

f(6) attain a maximum value. It was shown in Chapter II that for a "mono-

chromatic" velocity profile this maxinmmwould occur at _ or 6 equal to

one half the wave length. Thus, for a "monochromatic" velocity profile,

the vertical shear spectrum scale should be twice the vertical autocorre-

lation scale.

Mixing Length Scale

An analogy between random molecular and turbulent motions introduces

the concept of mixing length. According to the mixing length idea of tur-

bulent motion, eddies in fully developed turbulence transport momentum from
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one level of the flow to another. The transport of momentum from the level

z to the level z + Lm produces a velocity fluctuation v in the mean veloc-

ity V according to the relation

_v (47)v = V(z+L m)-v(z)_L m_-_ ,

where L is the mixing length.
m

is given approximately by

Thus the magnitude of the mixing length

V

Lm = _ , (48)

where v is the magnitude of the observed turbulent velocity.

Viscous Cutoff Scales

Standard theories of homogeneous turbulence provide a method of

evaluating the length and time scales of the smallest eddies_ those which

dissipate their kinetic energy by viscous action. The length scale of

these eddies is given by

(49)

and the time scale by

i

(5o)

where _ is the kinematic viscosity of the atmosphere and e is the rate

per unit mass at which energy is dissipated by viscous forces.



48

Spatial Correlation Scales

The one dimensional correlation coefficient of the turbulent winds

is defined by

g(O= (_Ev(_x)]2_Ev(_ + _)_2_)½ (51)

where the averages are taken over positions _ and _ is a spatial displace-

ment. _ere are actually two pertinent one dimensional correlation coef-

ficients gl(_) and g2(_) , the longitudinal and transverse correlations,

where _ is respectively parallel and perpendicular to the component v which

is being correlated. The scale of the largest, energy bearing eddies is

given by the integral scale of these correlation coefficients. The de-

fining equations are

To = 2_0 gl(_)d_ (52)

and

fL = g2(_) d_ . (53)
o 0

From standard homogeneous turbulence theory [see Nawrocki and Papa, 1963]

it can be shown that_ to second order_ gl and g2 are given by

_2
gl(_) = 1 2

2 Ld

(54)

and
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g2( ) = i
_2

2
L d

(55)

where Ld is the dissipation length parameter defined by

<vj>2

Ld = = (56)

Ld is a scale larger than L and smaller than L° . It corresponds

to eddies which contain a negligible portion of the total energy and are

responsible for a negligible part of the total dissipation of energy.

..2 J 2\

Solving for \_7-J from equation i0 of Chapter I, and using Uo = 3_Vx_>

allows equation (56) to be written as

4 5 2
2 o (57)Ld - c

Frequently the symbol U is used for the rms velocity V_Vxx _ . In this
O

notation equation (57) would have a numerical factor of 15 instead of 5.

Here_ however_ U refers to the total turbulent velocity and not merely
o

<vx2 2 2the x component. For isotropie turbulence = <Vy > = <v z > .

2 3<Vx2 > may be used to obtain (57)Hence_ the approximate relation U° =

in the present notation.

Since the total turbulent kinetic energy per unit mass PE is pro-

portional to U2 dPE
o_ and since the rate -_- at which this kinetic energy is

converted to internal energy by viscous forces is proportional to ¢ _ then

equation (57) requires the fractional rate of energy dissipation i---dPE

PE dt

to satisfy the relation
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i dPE ~ ___
PE dt 2Ld

Relation (58) justifies the namedissipation length parameter for Ld.

(58)

Relationships Among the Eddy Scales

The three eddy scales L _ L d and L ° are not entirely independent

of one another, and relationships among these scales can be derived. By

integrating the energy spectrum E(k) one can obtain the kinetic energy

per unit mass of the energy bearing eddies, that is

J Lo
0

(59)

Use of the form for E(k) given by (18) and (32) and evaluation of the

integral in (59) shows that to a good approximation the terms in k* and

k b can be neglected. This leads to the approximate result

- 23 G _2/3s k-2/3o (6o)

Substituting L
O

for k "I and solving for c yields the relation
O S

C
S

= (3 cO-3/2 _3o
l,

0

(61)

One of the formulas of standard turbulence theory is

u3
O

= A --
s L '

O

(62)

where A is a dimensionless constant of order unity. If the value _ = i
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is used as an average of those obtained in Chapter II, relation (61) im-

plies that A _ 0.2.

2 given by (57) is combinedwith (61), thisIf the relation for Ld

produces the equation relating Ld and Lo, given by

2
Ld
L
O

(63)

If e, obtained from equation (57), is also substituted into (49), this pro-

duces the relationship between L_ and Ld given by

T1.2 _ (64)

0

Equations (63) and (64) may be combined to produce a relationship among

all three length scales, as given by

¢ (65)
L*2 = _q- 3/2 "

s (15c_) L
0

This corresponds to the relation

*2
L =

i0 J--_L
0

(66)

derived by Townsend [1956] for isotropic homogeneous turbulence with no

buoyancy subrange.
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The Buoyancy Subrange Scale

Roper [1963] has predicted a buoyancy subrange which becomes most

important when the buoyancy kinetic energy per unit mass is of the same

magnitude as the turbulent kinetic energy per unit mass. The buoyancy

kinetic energy per unit mass is_ as derived in Appendix B_

z 2 i 2 2
vb = _ Lb w , (67)g

where Lb is the characteristic largest scale of the buoyancy subrange_

and Wg_ as defined in Chapter I_ is the frequency at which a fluid element

2

would oscillate when displaced from its equilibrium altitude. Since ½v b

must be less than_ or at most approximately equal to the observed turbu-

lent kinetic energy per unit mass ½ v2_ it follows that

< 2_-v

Lb ~ w ' (68)
g

where v is the average observed turbulent velocity. The eddies of size

less than Lb are affected by the Roper buoyancy subrange. Over the height

range from i00 to ii0 km w is approximately 2.5 x 10 -2 sec -I. Thus_ use
g

of the observed value v = 15 m/sec in relation (69) yields a value of

about 0.8 km for Lb . This value is in good agreement with the observed

Lb values in Figure 3 for the altitude region from 98 km to the turbopause

at 106 kin.

Time Scales

The time correlation coefficient of the turbulent wind component

v is defined as
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<v(t) v(t + 6t)>

g(6t) = (<[v(t)]2> < [v(t + 6t)]2>}½

, (69)

and the time scale _ of the turbulent winds is the first value 6t = T at

which g(T) = O. If an eddy of size scale L e has a characteristic velocity

Ve, then its time scale Te is given approximately by

: v _ . (70)Le e e

Experimental Observations

The total winds are composed of prevailing, 24 hour and shorter

period tidal components, gravity wave and turbulent components_ Greenhow

and Neufeld [1959a, 1959b, 1960] report large scale anisotropic turbulence

with vertical scale _ 6 km, horizontal scale _ 200 km and time scale _ i00

min. There is some doubt (see Appendix A) as to whether the motions of

this scale contain true turbulent components. Gravity wave theory [Hines,

1960] apparently accounts for these observed scales satisfactorily. The

conclusion of Chapter II that near i00 km the vertical and horizontal

scales of the turbulence are about 7 and i0 km supports the gravity wave

explanation for the 200 kmhorizontal scale observed by Greenhow and

Neufeld.

The vertical scale of the total winds and large scale non-tidal

components may be calculated by using the total and residual winds in the

vertical autocorrelation formula (45). The wind data were divided into

overlapping altitude segments of 20 km and the vertical scale was calcu-

lated at five km intervals. Figure ii shows the average results obtained

from 18 chemical release profiles. The solid curve shows the vertical
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autocorrelation scale of the total winds in the altitude range from 80 to

160 km. Total wind scales above 140 kmwere estimated by extrapolation

of the vertical autocorrelation curves to their zero point and may be

somewhat in error. Two values of vertical scales obtained by Webb [1964]

at lower altitudes indicate continuity of the vertical scale of the total

winds between lower and upper altitudes with an exponential increase in

the lower region. From 80 to 140 km the vertical autocorrelation scale

of the total winds is seen to follow closely the variation of the pressure

scale height, as suggested by Zimmerman [1964]. The calculated vertical

autocorrelation scale of the residual winds is also shown in Figure ii.

Figure 12 shows the calculated shear spectrum scale for both total

and residual winds for altitudes up to 150 km. The shear spectrum scale

of the total winds is also seen to follow the variation of the scale height

in the region 80 to 125 km. Table 4 shows the observed ratio between the

shear spectrum scale and the vertical autocorrelation scale. Below i00 km

this ratio is close to unity. Above i00 km this ratio is approximately

two 3 as expected for a "monochromatic" wind profile.

The facts that the winds below the turbopause are distinctly mul-

tiple wave length forms and that the observed spectrum functions Eo(_) and

(_) agree with turbulence theory predictions mean that in this height
o

region the vertical scale of the residual winds is virtually identical to

the vertical scale of the turbulence.

The turbulent winds may be obtained by individual tracking of glob-

ules or other identifiable features on the chemical release clouds. Using

these turbulent velocities and vertical shears obtained from total wind

profiles_ one may use equation (48) to calculate the mixing length.
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Table 4. Ratio of Shear Spectrum Scale to Vertical

Autocorrelation Scale for Total and Residual Winds

He ight

(km)
Total Winds Residual Winds

8O

85

9o

95

i00

105

ii0

115

120

125

130

135

14o

145

15o

155

1.00

1.o7

o .98

1.02

1.68

i .36

1.41

1.49

i .23

1.35

1.27

2.15

1.77

1.96

2.02

1.84

i .77

loo_

1.56

1.6o

1.71

1.86

1.75
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Figure 13 shows the calculated mixing length in the height region from 92

to iii km. It is seen from Figure 13 that the mixing length oscillates

about a constant value of approximately 0.75 km up to the turbopause region

and then increases rapidly above that altitude. Thus the mixing length and

the largest buoyancy subrange scale Lb are about equal in the height region

immediately below the turbopause.

The viscous cutoff scales can be estimated from equations (49) and

(50) by using data for c obtained from Figure 6. Table 5 lists some values

for L and • calculated in this manner and v , the characteristic velocity

of the smallest eddies, as determined by equation (70). Size and time

scales, as well as velocity fluctuations of this magnitude are not observ-

able with present techniques of chemical release observation. The smallest

globules observed on the chemical releases studied for this report were

about 200 m in diameter. Smaller globules could not be resolved with the

short (7 inc_) focal length cameras used. However, Blamont and de Jager

[1961] have reported observations of globules as small as 90 m in diameter

using higher resolution photography.

Use of the time varying winds over the li_'etime of the chemical re-

lease to obtain turbulent velocities limits the observations to the middle

portion of the turbulent spectrum. The smallest scale wind motions are

excluded because of the finite time intervals (usually 15 or 30 seconds)

between successive cloud position determinations. Any very large scale

turbulent velocity fluctuations which may exist would be excluded because

of the short usable lifetime of the chemical clouds (usually not more than

about i0 min). However, it appears that most, if not all, of the larger

scale turbulent fluctuations can be observed in this time period. For a
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largest turbulence scale L = 7 to i0 kmwith characteristic velocity 23
o

to 26 m/sec_ as indicated in Chapter II_ the time scale of the largest

eddies would be 300 to 400 sec. In this case cloud observations over i0

minutes or longer would allow ample time for measurements of the largest

eddies.

Figures 14 and 15 show two presentations of the observed turbulent

velocity spectrum. Figure 14 shows the fraction of the observed turbulent

velocities with magnitudes between one m/sec limits versus velocity from

0 to 50 m/sec. Figure 15 shows the fraction of observed turbulent veloc-

ities greater than a given velocity v, versus v from 0 to 50 m/sec. The

appearance of the graph in Figure 14 below the maximum at a velocity of

about eight m/sec is affected by the loss of small scale resolution and

by velocity errors in the technique used for measuring the turbulent winds.

The turbulent velocities can be used in (51) to calculate the spa-

tial correlation function. An approximation to the longitudinal correla-

tion coefficient gl can be made by considering north-south velocity cor-

relations between points separated by less than two km in both east-west

and vertical directions_ and similarly for east-west wind components using

points separated by less than two km in both north-south and vertical di-

rections. Figure 16 shows the average results for gl(ns) and gl(ew) versus

the horizontal separation distance r. The correlation curves of Figure 16

do not have the standard form for a longitudinal correlation coefficient

in isotropic turbulence. There is a similarity_ however_ with the form

given by Townsend [1956] for isotropic turbulence consisting of eddies of

only two distinct sizes. The rapid decorrelation in the region r < 2 km

shown in Figure 16 may be a result of the buoyancy subrange influence at



61

c-

U
L

O_

O
,t-

O

0

c-
O

U
n_

i,

8 . I 'I I ' I

6

4

2

0

0 I0 20 30 40 50

Velocity, m/sec

Figure 14. The Fraction of Observed Turbulent Velocities

in one m/sec Intervals versus Velocity.



62

I00

8O

2O

0 I0 20 30 40

Velocity v, m/sec

5O

Figure 15. The Fraction of Observed Turbulent Velocities

Greater than a Given Value v, versus v.



63

c-

o co _ _- eJ o c'J

_- c_ c_ c_ c_ c_ c_
!

u

J_

,2

o co _ _ oJ o oJ

_- c_ c_ c_ c_ c_ c_
I

0

0

0
r._

I
,s::l

h
0

0
0

._ r.)
-0

°_

0 _
•r-I @

q) %

0
r_) 4-_

m
,--t I1)

•,---t I
4._ ._

,Z

©
ci
_3
,-t

,-t

.r-.t

_3

r_



64

small scales or, more probably_ the result of limited accuracy in deter-

mining the turbulent velocities. The rms observed turbulent velocity is

about 15 m/sec and the average error in turbulent wind determinations is

about five m/sec. Because of these uncertain anomalies_ the correlation

curves of Figure 16 cannot be used to obtain reliable estimates of the

integral scale L° or the dissipation length parameter Ld. However_ the

fact that the zero points on the curves of Figure 16 are at about six km

does verify that L must be of this order of magnitude for horizontal
o

displacements.

Since wind shears tend to stretch the chemical clouds into more or

less horizontal configurations_ it is easier to find points for correlation

with horizontal rather than vertical separations. However, the vertical

spatial correlation has been calculated in a similar fashion to the hori-

zQntal correlation by considering vertical velocity component correlation

only between points separated by less than two km in both horizontal di-

rections. Because of the few correlation points obtainable, the vertical

spatial correlation curve has a more ragged appearance than the graphs of

Figure 16 and hence is not shown here. However, it has quite similar fea-

tures of rapid decorrelation at the small displacements and a zero point

at less than six km.

By using U ° = 25 m/sec and data from Chapter I for _ and c , one

can employ equation (57) to obtain the values of L d shown in Table 5- If

= i and ¢ = 0.37 Am_/sec 3 are chosen as appropriate values, equation
S

(61) yields the value 8.2 km for Lo, in good agreement with the estimates

and L by equation (70) implies that themade in Chapter II. Relating U° o

time scale T of the largest eddies is about 330 SeCo Direct time corre-
O
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lation of the turbulent velocities by relation (69) shows a correlation

scale of about 300 sec_ in good agreement with this value for T
o"

As discussed in Chapter I_ the time required for globules to diffuse

to their leveling off diameter_ which corresponds to Lb_ is 150 _ 40 sec.

The globules remain in the level phase for about 50 sec_ that is_ until

200 _ 40 sec after the release of the chemical cloud. The period of har-

monic oscillation for a fluid element displaced from its equilibrium alti-

tude is 2W/Wg, which ranges in value from 250 to 285 sec in the altitude

from 85 to Ii0 km. Thus the globules remain under the influence of the

buoyancy subrange for an appreciable fraction of an oscillation period.

Layzer [1961] has argued that if a fluid element retains its iden-

tity for a length of time equal to a major part of a complete oscillation

period_ then the motion is not true turbulence. The harmonic oscillations

caused by the buoyancy subrange are certainly too ordered to be considered

random turbulent motions. However_ Layzer's argument is based on the

Bolgiano buoyancy theory which allows the buoyancy subrange to affect

large scales of the motion and possibly to produce motions which are larger

in magnitude than the random turbulent fluctuations. Since the observed

buoyancy subrange is confined to the small scale r_nge_ its regular veloc-

ities are always smaller in magnitude than the random fluctuations and the

total irregular velocity fluctuations retain the randomness necessary for

turbulent motions.

Taking equation (67) as the definition of the characteristic veloc-

ity vb of the largest buoyancy scale LbJ and using (70) to calculate Tb,

one can obtain the result

J7
Tb - w " (71)

g
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In the region near i00 km (71) yields a value of about 57 sec, in good

agreement with the observed time which the globules spend in the level

phase.
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Table 5. Summary of Altitude Dependent Viscous Cutoff Length

and Time Scales_ and the Dissipation Length Ld

96 _

He ight L T v L d

(kin) (m) (see ) (m/see) (kin)

92 17 51 0.3 2.9

94 19 44 O. 5 2.4

96 22 37 0.6 2 .i

98 24 31 0.8 1.7

lO0 26 25 1.0 1.4

102 30 23 i. 4 i. 3

104 33 18 1.8 1.0

106 35 14 2 .i 0.8
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CHAPTER IV

CRITERIA FOR THE ONSET OF TURBULENCE

In Chapter I the turbulence cutoff altitude_ the turbopause_ near

106 km was justified by energy balance considerations. The turbopause can

also be justified_ though not as rigorously_ by stability considerations.

In a region of the atmosphere where the temperature is stably stratified_

such as above the mesopause at about 85 km_ the temperature structure can-

not provide the instability or energy necessary for maintaining turbulence.

This instability and energy can be provided only by wind shears• In such

cases the Richardson criterion and possibly the Reynolds criterion for the

onset of turbulence must be satisfied in order for turbulence to be pres-

ent.

The Re,molds Criterion

In a fluid characterized by length scale L_ density p _ character-

istic velocity v and kinematic viscosity _ the inertia force per unit

volume is

2
C. pv
1

Fi - L (72)

and the friction or viscous force per unit volume is

Cf _ p v

Ff -
L 2

(73)

where Ci and Cf are dimensionless constants. Blamont and de Jager [1961]
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have proposed that a necessary but not sufficient condition for the exist-

ence of turbulence in a free atmosphere is that the Reynolds number defined

by

Cf F.l vL

Re - Ci Ff _ (74)

be greater than some critical value Recrit. Flow experiments in cylindri-

cal tubes show Re _ 2000 if L is taken to be the tube diameter and v
crit

the average flow velocity. However, Hines [19633 has raised some theoret-

ical questions as to the validity of the Reynolds criterion for free atmos-

phere flow. In addition to these problems, the relevant values of L and

v to be used in the free. atmosphere Reynolds number are not known. Also

the correct critical value for a free atmosphere is uncertain. Thus the

criterion Re > Recrit , even if appropriate, cannot be used as a rigorous

necessary condition for the existence of turbulence. Nonetheless, if the

Reynolds criterion is accepted as necessary, it can be used to give at

least a plausibility argument for the validity of the 106 km observed

turbopause.

One possible choice of velocity and length scales is Uo and Ld, the

characteristic velocity of the largest eddies and the dissipation length,

discussed in Chapter III. This choice defines the turbulence Reynolds

number

U o L d

Re t - _ • (75)

Blamont and de Jager [1961] made the choice _, the average total

wind speed, and LH# the pressure scale height, shown in Chapter III to be
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equivalent to the vertical autocorrelation scale.

total winds Reynolds number

This choice yields the

ReT - _ (76)

Twopossible "hybrid" Reynolds numberswhich can be formed by alternate

combinations of these characteristic length and velocity values are

and

U LHO

Reo - _ (77)

Ld

Red - ii • (78)

U ° was shown to be about 25 m/sec in Chapters II and III. Values

of LH and L d were also given in Chapter III. V can be evaluated by aver-

aging over the wind speeds obtained at a given altitude from several chem-

ical releases. Figure 17 shows the calculated height variation of the four

Reynolds numbers of equations (75) through (78). An assumed value of 2000

for Recrit is shown as a vertical dashed line in the figure. This value

of Recrit would be consistent with a 106 km turbopause if either Re T or

Re is the relevant Reynolds number. Recrit would have to be less than
o

i000 for Re d and less than 400 for Re t to be the relevant Reynolds number.

None of these possibilities is unreasonable. Therefore the observed tur-

bopause at 106 km is at least plausible by the Reynolds criterion. None

of the Reynolds numbers (75) through (78) could satisfy the Reynolds cri-

terion with any reasonable value of Recrit for more than a few kilometers



71

0

I I I

I , I I
0 0 0"_

0

0

0

0

E

Z

0
c-

r-H

,-I
0

(D

,-I

r-4

_aO
.r-I



72

above the 106 km turbopause.

Part of Hines' argument against the necessity of the Reynolds cri-

terion is that the Reynolds number is important only at the viscous cutoff

* vL

scales. Evaluation of Re , defined as _ _ by the use of equations

(49), (50) and (70) shows that Re* = i. This fact implies that the only

applicable Reynolds criterion for a free atmosphere is Re > i, which is

the condition leading to the viscous cutoff scale. Extrapolation of the

graphs in Figure 17 shows that the Re > I criterion would lead to an abso-

lute upper limit for the turbulence cutoff altitude between 120 and 140 km.

This is in agreement with a previous prediction of 120 km made by Stewart

[1959], based on the same criterion.

Shear Dependent Criteria

In a free atmosphere it is stability that primarily determines

8T

whether or not turbulence is present. If the temperature gradient 8-_

is negative and less than the adiabatic temperature gradient -g/Cp_ the

atmosphere is gravitationally unstable and the velocity gradient will

a_ost never be so small that the turbulence will be inhibited by a low

8T

Reynolds number. When _ > 0 the region is gravitationally stable and

the flow will be laminar in weak velocity gradients. But if the shear is

sufficiently large the region will be turbulent in spite of the gravita-

tional stability. Several criteria have been proposed for testing the

allowability of turbulence in a gravitationally stable medium.

Richardson's Criterion

Richardson's criterion [1920] is based on the assumption that if c,

of the energy balance equation ¢ = ¢ + c_ is greater than zero_ then
s g
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turbulence exists. The condition e > 0 is equivalent to ¢ - ¢
s g

Cg/es < i. Richardson uses the approximation to equation (2)

$V
x 2

e = V V - Km _ss x z _z

_V

where w is x
s _-- and _ is given by

>0 or

(79)

V V

KE _ z . (80)
S

He uses for e the form
g

2

-- (81)g g

with KC = v Lz m
This is the same as equation (7). Richardson assumes

that KE = KC, so the condition Cg/¢s < i is equivalent to

2
Ri --_ < 1 (82)

= 2
_D
S

The Richardson criterion for the onset of turbulence is thus

Ri < I turbulent

(83)
Ri > i laminar

Townsend's Criterion

Townsend [1957] developed a more elegant criterion for the onset of

turbulence based on an analogy between turbulence and Brownian motion. For

this theory the quantity w t defined by
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7z)i --/+ v2 + wt¢ = _ vx y (84)

is important. Using the Brownian motion analogy, Townsend arrives at the

result

v L
z m

7
z

- 2 wt
(85)

Using this result, one may rewrite (81) as

2
-- w
2 __1

¢ - 2k v
g g z w_

where k = i for the Brownian motion analogy and is presumably close to
g

unity for turbulence.

Equations (84) and (79) maY be rewritten as

(86)

D

2
3 kt v w t- 2 z (87)

and

m

2 2
¢ - k v w ,
S 5 S Z S

(88)

where the coefficients kt and k are of order unity.S

Defining the Richardson flux number as

Rf

C

C
S

(89)

Townsend derives the result
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75 kg kt Ri

(Z-Rf) _f - _ k2
S

(90)

The left side of (90) is a maximum at Rf = ½ and at this point Ri is the

critical value Ricrit given by

k2
4 s

Ricrit - 75 kg kt _ 0.05
(91)

The flow will be turbulent for all Ri < Ricrit.

Layzer's Criterion

Layzer [1961] extended the ideas of Townsend by imposing the addi-

tional restriction w t > w . Layzer imposes this condition because he feelsg

the situation c > ¢ is not likely to occur since turbulence tends to max-
g

imize the turbulent dissipation rate ¢ For w t > w it is necessary thatg

Rf satisfy the inequality

k

Rf < g
o

kg + 3kt (92)

Combining (92) and (90), Layzer derives the condition

Ri < Ricrit - 25 k + 3k t _ 0.04 (93)
g

for the onset of turbulence.

Generalized Richardson Criterion

Table 6 shows the observed values of several parameters which are
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important in the Richardson_ Townsend and Layzer criteria. From the tabu-

lated values of Ri it is seen that the Richardson criterion would predict

no turbulence in the region below 106 kin. The values of _ and c - _ from
S S

Figure 6 can be used to calculate Rf = (¢s- c )/c s. Table 6 shows that the

16
Townsend relation Ri _ (i - Rf) Rf does not agree with observation. The

observed values of wt and w in Table 6 fail to satisfy wt _ w in theg g

altitude region below 106 km_ in contradiction to the Layzer assumption.

Therefore neither the Richardson_ Townsend nor Layzer criterion is com-

patible with observation.

Apparently these theories fail because they attempt to determine if

the wind shears provide sufficient energy for the existence of turbulence

but use the parameters Cs_ _ and _ which are actually power quantitiesg

associated with the eddies whose existence or non-existence is supposed

to be explained by the criteria. Also the Brownian motion analogy_ on

which both Townsend's and Layzer's criteria depend_ is probably not a good

approximation for the turbulence of the upper atmosphere where the buoy-

ancy effects are so important. The reason for the failure of Layzer's

assumptions was also discussed in Chapter III.

A more appropriate energy criterion is the requirement that the

2 w2 be less than thebuoyancy kinetic energy per unit mass ½ v2 = ¼ Lb g

turbulent kinetic energy per unit mass ½ v2 which can be induced by wind

shears. Thus a generalized Richardson number

2. vb _ w
Ri - _ g

2 2
v V

(94)

can be defined. Turbulence should exist for all values of Ri such that
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Table 6. Observed Values of Turbulence Criterion Parameters

He ight w w wts g

(k/n) (sec -1 ) (see -1 ) (see -1 )

Ri Rf

-5
92 o.o168 0.0235 1.7 x io

94 o.o162 o.o241 3.6 x lO-5

96 o.o193 0.0243 7.6 x lO-5

98 o .o194 o .0245 o .00016

ioo o .o184 o .0245 o .00034

lO2 o .o188 o .0245 o .00063

lO4 o .o21o o .o245 o .oo15

lO6 o .o216 o .0245 o .oo31

lO8 o .0255 o .0245 o .0067

i .96 o .99 o .oo15

2.22 o .99 o .0029

i .59 o .97 o .0060

i .60 o .94 o .Oli

1.77 o .88 o .022

1.9o o .80 o .034

1.36 o.55 o.o53

1.29 o.o9 o.o18

o.92 ....
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* 2
Ri < i. However_ v

is the mixing length.

L 2 w2may be written as by equation (48), where L
m s m

Therefore Ri may be put into the form

2 2

* I Lb Wg

Ri - 2 L2 2
m s

(95)

This should be compared with a similar relation proposed by Blamont and

de Jager [1961]. Table 7 lists the observed values of v 2 and the calcu-

2
and Ri for several altitudes. It is apparent thatlated values of vb

the condition Ri _ i correctly predicts turbulence for all altitudes

below I06 km.

In Chapter III it was pointed out that globules are influenced by

the buoyancy subrange for a length of time only slightly less than 2W/Wg.

a period _ = 2w/w is calculated using w values from Table 6_ it isIf
S S s

found that the average value of T between 92 and 108 km is 340 sec. This
S

value is in good agreement with the 300 to 330 sec observed time scale T
O

of the largest eddies. Equation (58) implies that the time constant for

the conversion of turbulent kinetic energy to internal energy is propor-

tional to L_/_ . The period _t = 2w/wt evaluated from values in Table 6

is found to satisfy the approximate relation

2
Ld

Tt - 12 (96)

in the height region from 92 to 108 km.

Roper [1963] has proposed that the generalized Richardson number

be defined by

Rid

2 2

Lb Wg

2 2

Ld w s

(97)
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* 2 2

Table 7. Parameters for Ri = Vb/V

2 2

He ight Lb vb v

(_) (kin) (2/sec 2) (2/sec 2)

Ri

92 O.4 44 196 0.22

94 0.4 46 185 0.25

96 0.4 47 216 0.22

98 O. 61 112 159 O.70

i00 0.76 173 207 O.84

102 0.76 173 303 0.57

104 0.78 182 252 0.72

i06 0.88 232 222 i.O5

108 i .32 525 222 2.36
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Roper also derived a relation which can be expressed as

C

Rid _ 2 ' (98)
i0 1]w

S

2

Table 8 shows the observed values of i0 _ W2s, _/(i0 _ Ws) and Ri d . Rela-

tion (98) is seen to produce values in reasonable agreement with the ob-

served Ri d values below the turbopause. The condition Rid < i also cor-

rectlypredicts turbulence for all altitudes below 106 k_ although in the

lower altitudes shown in Table 8_ Ri d is much less than Ri because Ld >>

L in this height region.
m
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Table 8. Parameters for Ri d

Height

(m2/sec3)

2
i0 llw

S

Observed Ri d

92 0.016 0.14 0.036

94 0.025 0.19 0.060

96 0.047 0.21 0.060

98 0.067 0.30 0.20

100 O.O80 0.54 0.48

102 O.O9O O.9O 0.6O

104 O.26 O.72 0.84

106 0.37 1.08 1.50

108 0.95 0.90 3.96
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CHAPTER V

CONCLUSIONS

Turbulence exists in the upper atmosphere only to an altitude o_

about 106 km_ as determined by examination of the globule cutoff on many

chemical release clouds. The globule cutoff altitude is a good estimate

of the true turbopause because the naturally occurring turbulence provides

an unstable medium in which small fluctuations in the releasing of the

chemical clouds lead to the globular structure. Only for releases at very

uniform rates or in small concentrations would the turbulence fail to pro-

duce this globular structure up to the actual turbopause altitude. And 3

although globules already produced in the turbulent zone might be carried

upward a short distance by such mechanisms as residual upward momentum

after release or temperature buoyancy_ they should not be found more than

a kilometer or two above the true turbopause.

T_ouient winds determined by chemical release tracking are useful

and c . Turbu-
in obtaining estimates of the energy balance terms Cs, g

lent diffusion of globules at times after release t _ 200 sec follows a

d 2 ~ ¢ t3 law_ with the height variation of c in reasonable agreement with

the turbulent wind determinations of ¢ . Both c and ¢ are slowly varying
s g

with altitude_ c being approximately 0.4 watts/kg in the 90 to ii0 km
S

region and ¢ being about 0.35 watts/kg in this height region. However_
g

increases rapidly with altitude_ varying by more than three orders of

magnitude between 90 and ii0 km. Data at lower altitudes indicate that ¢

continues to decrease with decreasing height_ changing by an additional
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three orders of magnitude or more between 90 and 30 km. Since energy bal-

ance requires that the source term c be greater than the dissipation term
s

¢ _ the rapid increase in _ is responsible for the turbopause. The turbo-

pause altitude predicted by the observed _ variation is 106 km_ in agree-

ment with the observed value.

During the earliest observed phases of globule growth (t _ 150 sec),

diffusion is influenced by the buoyancy subrange_ with a resulting d2 ~

c t5 diffusion law as predicted by Bolgiano. If more precise globule di-
g

ameter measurements could be made during this phase of the globule expan-

sion_ this would provide an independent method for determining ¢ . How-
g

ever_ this cannot be done at present. Only the smaller scale sizes are

affected by this buoyancy subrange. During the time after release 150

t % 200 sec_ the buoyancy subrange no longer affects globule diffusion.

Expansion during this interval occurs by molecular diffusion alone. The

150 sec initial period in which buoyancy effects are observed is an appre-

ciable fraction of the period 2w/w for harmonic oscillation of a fluid
g

element displaced from its equilibrium point in a stably stratified

atmosphere. The approximately 50 seconds of molecular diffusion corre-

sponds closely to the theoretically predicted time scale _-/Wg of the

largest buoyancy subrange eddies. The maximum buoyancy subrange scale Lb

varies with altitude but is approximately 0.8 km in the height range 98

to 106 km. This value can be predicted by the requirement that the char-

buoyancy kinetic energy ½ v_ must be less than the observedacteristic

turbulent kinetic energy.

The decrease of Lb with decreasing altitude is responsible for the

slow transition of cloud appearance from spherical globular structure to



84

a more general fuzzy shape. This is because the buoyancy subrange motions

are more ordered than the larger scale inertial subrange motions. As Lb

decreases the buoyancy subrange cannot act on the expanding cloud elements

for a sufficient length of time to produce the regular spherical globules.

Diffusion at scales larger than those at which globules can usually

d2 t2be observed has been found by other investigators to follow a ~

growth law. At present it cannot be determined if this is a transition

from the d2 ~ t3 globule diffusion 3 as would be expected from Tchen's shear

turbulence theory 3 or whether this is merely an erroneous observation

caused by difficulties in accounting for sky background on the chemical

cloud observations at large scales. An alternate method, independent of

sky background, for measuring large scale diffusion effects would be most

useful in resolving this question. Since globule center point positions

can be determined with no dependence on sky background, observations of

the growth with time of the separation distance between center points of

pairs of globules at approximately the same altitude would provide such a

method.

All experimental evidence agrees with an energy spectrum E(k) as

shown in Figure 7(c). The inertial subrange, ko _ k <_ _, portion of E

is given by equation (18) with _ _ i. The buoyancy subrange, kb < k < k

(k* _ kB, the smallest buoyancy scale), portion of E is given by (32) with

8 varying with altitude and having values of 0.08 and 0.8 at 95 and 105 km

respectively. Equation (18) was obtained by substituting ¢ for ¢ in the
S

original non-buoyancy formulation. This alteration of (18), as well as

other relations coming originally from non-buoyancy theories, is justifi-

able since for turbulence with no buoyancy effects _ =
S
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The shear and energy spectrum functions E(_) and F(_) given by (24)

and (25) are approximately correct in the turbulent region when only ver-

tical_ shear influenced displacements _ are considered and the residual

wind profiles are used. The slightly higher than expected exponents actu-

ally observed for the E and F power laws (_ 0.7 and 1.5 respectively) might

be an effect of the slight anisotropy of the motion field or a result of

buoyancy subrange influence. Above the turbopause at 106 km_ the exponents

of the E and F power laws are still higher ( _ 0.8 and 1.65 respectively).

Thus the F power law exponent is approaching the expected value of 2.0 for

a "monochromatic" velocity profile. Hence this increase in the power law

exponents is explained by the turbulence transition. Maxima in the shear

spectrum function are associated with a length scale of the motion by anal-

ogywith the motion spectrum function for a "monochromatic" wind profile_

which has a motion spectrum function maximum at one half wave length. Be-

tween 80 and 120 km the shear spectrum scale of both the total and residual

winds follows closely the height variation of the pressure scale height.

Data on the vertical scale of the winds at lower altitudes indicate a con-

tinuous exponential increase from sea level to 80 km.

The horizontal motion spectrum function f(6) given by (29) is found

to be valid in the turbulent region_ with _ _ 1.5 near the i00 km level.

Considering f(8) as a horizontal equivalent of the vertical energy spectrum

function E(_) implies that the characteristic velocity U of the largest
O

eddies is about 25 m/sec. This equivalence of f(6) and E(_) is justified

by the fact that f(6), given by (28), is the definition of the energy spec-

trum function for isotropic homogeneous turbulence_ and the observed tur-

bulence is only slightly anisotropic. Estimates of U made from E(_) are
o
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somewhat lower than 25 m/sec_ but these determinations are complicated by a

residual contribution from the total winds to the observed energy spectrum

function Eo' as given by (30). The proper energy spectrum function E(_)

should involve only the turbulent winds and should have no such contribu-

tion from the larger scale prevailing_ tidal or gravity wave components.

Between 80 and 140 km the observed vertical autocorrelation scale_

determined by equation (45), also follows closely the height variation of

the scale height. Below the turbopause the ratio of the shear spectrum

scale to the vertical autocorrelation scale is approximately unity. Above

the turbopause this ratio approaches 2.0_ the expected value for a "mono-

chromatic" velocity profile. The shear spectrum and vertical autocorrela-

tion scales of the residual winds should be the same as the vertical scales

of the turbulent winds. They indicate a vertical scale of about seven km

for the turbulent winds near i00 km. Since the horizontal scale is about

i0 km_ the turbulence is made only slightly anisotropic by the strong ver-

tical shears. According to Bolgiano's original theory_ buoyancy effects

could also cause anisotropy of the motion field. However_ since the ob-

served buoyancy subrange affects only the smaller scales_ it apparently

does not contribute to the anisotropy. An estimate of the characteristic

scale L of the largest eddies by equation (61) yields the value 8.2 km,
o

which is a reasonable average value of the largest vertical and horizontal

scales observed.

The mixing length L is found to oscillate about a constant value
m

of 0.75 km below the turbopause and then increase rapidly above this alti-

tude. Thus L m _L b in the region i_mediately below the turbopause.

The viscous cutoff size and time scales L and T calculated by
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equations (49) and (50) are not inconsistent with observation since scales

this small cannot be observed with the resolution presently obtainable.

The spatial correlation functions g(_) given by (51), although indi-

cating that L ° must be of the order of six km or larger, cannot be used

for accurate estimates of L ° or the dissipation length Ld. The observed

rapid decorrelation in the turbulent winds is probably due to the accuracy

limit to which these winds can be measured. However, this rapid decorre-

lation may also be an effect of the buoyancy subrange acting on the small

scales. Ld can be estimated by relation (57) and is found to vary with

altitude_ having values of 2.9 and 0.8 km at altitudes 92 and 106 km re-

spectively. Relations among the eddy scales L , Ld and L previouslyo

derived for isotropic non-buoyancy turbulence must be modified because of

the important buoyancy effects present.

The characteristic time T of the largest eddies is found to be
O

about 300 to 330 sec by both relation (70) and by direct time correlation.

Thus chemical cloud lifetimes of approximately i0 minutes allow ample time

for observation of most, if not all of the turbulent spectrum. The ob-

served value To is approximately equal to the period calculated by 2W/Ws,_

where w is the observed magnitude of the total wind shear.
s

The usual Richardson, Townsend and Layzer criteria for the onset

of turbulence are not succesful in explaining the observed turbulence cut-

off at 106 km. These theories attempt to determine if wind shears provide

sufficient energy for the existence of turbulence_ but rise the power quan-

c and ¢ in their formulation. The generalized Richardson cri-
tities Cs_ g

terion, based on the energy requirement that _vbl2 must be less than the tur-

bulent kinetic energy per unit mass which can be produced by wind shears,



leads to a generalized Richardson numberRi , given by (94) or (95). The

criterion Ri _ i successfully predicts turbulence for all altitudes below

106 kin. Equation (98) provides a good approximation to Rid, given by (97),
.

in the region below the turbopause. The criterion Rid _ i also success-

fully predicts turbulence only below 106 km.

In addition to the generalized Richardson criterion_ it has been

proposed that the Reynolds criterion Re _ Recrit must be satisfied if tur-

bulence is to exist. Uncertainties as to the proper characteristic length

and velocity as well as critical value for a free atmospheremakeapplica-

tion of the Reynolds criterion only qualitative, but reasonable estimates

of these parameters showthat this criterion can be satisfied at most only

to a few kilometers above the 106 kmturbopause. However, Hines' theoret-

ical arguments against the necessity of a Reynolds criterion in a free

atmosphere maymeanthat this fact is only coincidental. Possibly the

only restriction on the turbulence by a Reynolds criterion is the absolute

upper limit of 120 to 140 km imposedby the condition Re _ I.
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APPENDIX A

COMPARISON OF TURBULENCE ON CHEMICAL AND METEOR TRAILS

Some early investigators [e. g. Greenhow and Neufeld, 1959a, 1960]

attributed many large scale irregularities in upper atmospheric winds to

turbulence. However, Hines' [1960] gravity wave theory was successful in

explaining many of the properties of these large scale irregularities.

Greenhow and Neufeld obtained the large scale irregular wind components by

subtracting 24_ 12 and eight hour period Fourier components from meteor

wind data obtained over all times of day. Hines [1963] has pointed out

that subtraction of only these components could still leave substantial

contributions from irregular tidal components and gravity waves. Hines'

gravity wave explanation of the observed properties of the large scale

irregularities certainly indicates that these irregularities are not en-

tirely turbulent motions and may contain no turbulence contribution at

all. The chemical release studies reported here indicate that most_ if

not all of the turbulent spectrum is confined to time scales less than

300 seconds. However_ irregular motions with time scales much larger than

300 seconds can not be observed with existing chemical release wind anal-

ysis methods. Therefore_ the question of what, if any portion of the large

scale wind irregularities is turbulence must remain unanswered at the pres-

ent time.

The success of Hines' theory led others [e.g. Nawrocki and Papa,

1963 and Cote, 1962] to question whether turbulence existed or not as a

natural phenomenon of the upper atmosphere. One proposal was that small
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scale irregularities observed on chemical and meteor trails were the result

of turbulence induced by the rocket, release mechanismor meteor in its

passage through the atmosphere. Turbulence could be produced in the wake

of a meteor or rocket, by a jet effect from pressurized or combustion re-

lease of chemicals in trail form or by explosive release of chemicals in

point release form. The key to showing that the turbulence is not arti-

ficiallyproduced is that each of these very different methods of producing

observable trails indicates the existence of turbulence, and the turbulence

so observed has almost identical characteristics in each case.

A typical bright meteor [Liller and Whipple, 1954] would have a ve-

locity of about 6 x 104 m/sec and would release approximately i0 grams of

material into the atmosphereby ablation. A typical chemical release would

put from one to 40 kg of material into the atmosphere from a rocket trav-

eling at about 103 m/sec. If all of the kinetic energy of the released

material were available for the production of turbulence, this would amount

to something of the order of 106 or 107 joules in either case. For a chem-

ical or meteor trail released over a 20 km length and having an initial

cross section of I00 m2, this would represent on the order of i joule/m 3.

If the value 10-6 kg/m3 is taken as a typical ambient density at the alti-

tude of release, this would be about 106 joules/kg of atmosphere, corre-

ponding to a turbulent velocity of about 103 m/sec. Since the observed

turbulent velocities are of the order of i0 m/sec, only about one hundredth

of the total energy is thus available for the production of turbulent

winds.

If turbulence is produced by the ejection mechanism, rocket or

meteor, the meteor would represent a small mass, high velocity source,

and the rocket or release mechanismwould represent a large mass_low
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velocity source. Explosive release of chemicals would provide yet another

type of energy source for the production of turbulence. It would be ex-

pected that these drastically different characteristics in the source would

produce observable differences in the resultant turbulence. However_cal-

culations of the turbulence power ¢ _ discussed in Chapter I_ from both

meteor and chemical trails as well as explosive releases all show reason-

able agreement with one another [Greenhow, 1959, Blamont and de Jager,

1961, Roper, 1963 and Noel, 1963]. The observed globule cutoff altitude

is also much the samefor both the trail and explosive chemical releases

analyzed during this work. Theglobule cutoff altitude reported here also

agrees well with that observed by other investigators [e.g. Blamont and

de Jager_ 1961], using very different release mechanismsand launch vehi-

cles. With these observed similarities, it seemsdoubtful that the ob_

served turbulence is artificially produced.

As further proof that the turbulence is a naturally occurring

ambient phenomenon,a calculation can be madeof the time variation of

the turbulent velocity that could be induced in the wake of a passing

rocket or meteor or as a jet effect from a passing pressurized or com-

bustion releasing mechanism. Schlichting [1960] has shownthat the max-

imumturbulent velocity present at a time t after the passage of a wake

producing body is given by

CI
v- t2 _ , (99)

and after the passage of a turbulence producing jet by

C2
v _ t " (lO0)
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For the choice of CI and C2 values such that both (99) and (i00) yield

v = 15 m/sec at t = i00 seconds after the passage of the rocket or meteor_

Table 9 shows values of v at various times t. Table 9 also shows the aver-

age observed turbulent velocities for one rocket released cloud. Although

these observed turbulent velocities remain constant with time, they are

somewhat lower than the usual 15 m/sec observed. Even so_ the predicted

jet and wake turbulent velocities are too small to agree well with the ob-

served values at the latest time. Usually turbulent velocities are not

calculated during the first 90 seconds after release of the cloud, because

of the velocity deviations which might occur during this period. However_

any early anomalous velocity deviations are certainly less than about 20

m/sec_ as has been shown by determinations of winds during this period.from

a few chemical releases. Therefore Table 9 shows that the jet and wake

turbulent velocities required at t = i0 sec are entirely too large. Thus

the required variation of the turbulent velocity produced in the wake of

either a meteor or rocket or the jet of a release mechanism is entirely

inconTpatible with the observed turbulent velocities.

The observed energy dissipation rate in the turbulence also leads

to the conclusion that the turbulence is an ambient phenomenon. If the

rocket_ release mechanism or meteor induced an initial turbulent velocity

Vo, and there were no ambient source for the maintenance of the turbulence_

then at a time t after the release_ the turbulent velocity v would be given

by

v2 2 (i01)A -V) -- _ t2 ( O S

where e = ¢ + ¢ is the observed total energy dissipation rate per unit
s g
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Table 9. Predicted Jet and Wake Turbulent Velocities and

Observed Turbulent Velocities

t (sec)

v (m/sec)

jet wake observed

i0

i00

25O

44o

620

150 70

_15 ---15

6.o 8.1

3.4 5.5

2.4 4.5

(< 20)

9.7

_.7

9.9

11.2
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mass of atmosphere. Figure 6 of Chapter I shows that ¢ _ 0.4 m2/sec 3.
s

2
Solving (i01) for v yields

2 2
v = v - 2 e t (102)

o s

If it is required that v = 20 m/sec at t = I00 sec; then the observed value

of e implies that v would go to zero by the time t = 600 sec; in obvious
s

disagreement with the observed turbulent velocities in Table 9. Since the

early anomalous velocity deviations are damped out during approximately the

first 90 seconds after releas% equation (102) implies that the actual tur-

bulent velocity induced by the rocket; release mechanism or meteor must be

less than i0 m/sec_ in aggrement with observation.
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APPENDIX B

DERIVATION OF EQUATION (67)

The virial theorem states that

9<7 (lO3)

where T is the kinetic energy of a single body system and F is the force

acting on the system located by the position vector r. Considering a fluid

element in the buoyancy subrange as a harmonic oscillator acted on _ a

force

2
F = -k r : -m w r , ,(104)
_ _ g --

then the average kinetic energy per unit mass ½ v_ is

i 2 T _ 2 2
vb - - 2 w r (105)m g

If the amplitude of oscillation is taken to be the largest buoyancy scale

Lb, then

z 2 i 2 4 _ 2W/Wg (Wgvb = _-_ w sin 2 t + (_) _ dt
g 0 g

2_

= w sin ___ d8

g 0

- _ g '
(106)
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which is the result stated in equation (67).

Another result of the virial theorem is that for a single body

n
system acted on by a power law force F ~ r

- n+l V
2 (lO7)

where V is the potential energy of the system. Thus for an harmonic

oscillator _ = _ and the requirement that the buoyancy kinetic energy

2
per unit mass be less than ½ v is equivalent to imposing the same con-

dition on the buoyancy potential energy per unit mass.
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